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Introduction:
The Stochastic Engine (SE) is a data driven computer simulation tool for predicting the 
characteristics of complex systems. The SE integrates accurate simulators with the Monte 
Carlo Markov Chain (MCMC) approach (a stochastic inverse technique) to identify 
alternative models that are consistent with available data and ranks these alternatives 
according to their probabilities. Implementation of the SE is currently cumbersome owing 
to the need to customize the pre-processing and processing steps that are required for a 
specific application. 

This project widens the applicability of the Stochastic Engine by generalizing some 
aspects of the method (i.e. model-to-data transformation types, configuration, model 
representation). We have generalized several of the transformations that are necessary to 
match the observations to proposed models. These transformations are sufficiently 
general not to pertain to any single application. This approach provides a framework that 
increases the efficiency of the SE implementation.  The overall goal is to reduce response 
time and make the approach as “plug-and-play” as possible, and will result in the rapid 
accumulation of new data types for a host of both earth science and non-earth science 
problems.

When adapting the SE approach to a specific application, there are various pre-processing 
and processing steps that are typically needed to run a specific problem. Many of these 
steps are common to a wide variety of specific applications. Here we list and describe 
several data transformations that are common to a variety of subsurface inverse problems. 
A subset of these steps have been developed in a generalized form such that they could be 
used with little or no modifications in a wide variety of specific applications. This work 
was funded by the LDRD Program (tracking number 04-ERD- 083).

Simple data transformations:

The MCMC approach aims to search for subsurface models that are most consistent with 
available data. These models can then be used to calculate other parameters of interest 
such as seismic velocity. Some of the calculations require that the properties in a 3D 
model be somehow “simplified” in order to be consistent with the physics being modeled. 
Figures 1 - 10 shows some of the simple data transformations we have identified and in 
many cases have coded.

3D model to 3D volume: (refer to Figure 1). This transformation is simply a reduction in 
volume size with possible re-sampling.  This is necessary when the forward problem 
requires a full 3-D volume, but not necessarily one that covers the complete 3-D model.  



Instead the codes might only require a single parameter (i.e. Vp only instead of Vp, Vs,  
density, Qp, Qs, etc.) or a small volume along the path, as would be required for finite 
difference codes.  Examples include finite difference codes like E3D (Larsen and Schultz, 
1995) or spectral element finite element codes like SPECFEM3D (Komatitsch and 
Tromp, 1999; Komatitsch et al., 2002) for waveform analysis.  This is also required for 
finite difference travel time codes, like the algorithm originally developed by Vidale 
(1988) and further refined by Hole and Zelt (1995), which uses an approximation to the 
Eikonal equation to compute first arrival travel times through regularly gridded velocity 
structures. 

3D model to 2D map: (refer to Figure 2). One such simplification (left side of Figure 2) 
involves the integration of properties along the vertical direction using depth-dependent 
sensitivity kernels as weighting functions; the integrated properties are displayed as a 2D 
map. When the sensitivity kernel has the shape of a delta function with the maximum 
located at depth Z, this transformation returns the horizontal distribution of model values 
for this depth. The calculation of seismic surface wave group velocity or phase velocity is 
an application that uses this approach. This is also used for seismic, body wave travel 
time calculations to reduce a complex model to a series of 2D surfaces.

3D model to 2D cross-section: (refer to Figure 3). In this case, we need to extract a 
distribution of values along a 2D vertical plane (say, from source to receiver). In some 
cases, the 2D distribution of values is calculated by averaging the property along the 
normal to the plane of interest. Seismic waveform synthesis using a 2-D version of the 3-
D finite difference programs like E3D (Larsen and Schultz, 1995) is one application that 
uses this approach, as would be programs that calculate travel times using a Gaussian 
beam technique like Xgbm (Davis and Henson, 1993).

3D model to 1D borehole: (refer to Figure 4). This transformation consists of extracting a 
vertical profile of property values from the 3D model.  This approach is used when 
calculating teleseismic receiver functions, which are the reverberations and conversions 
of incident P-waves under a seismic station.

3D model to surface: (refer to Figure 5). This data transformation is necessary in order to 
extract some types of surface from a 3-D model.  The surface could either be isocontours 
like iso-velocities (i.e. surface having 6.0 km/s P-wave velocity) or a surface that might 
represent physical units such as lithology.  Examples of this would be surfaces of basin 
depth or Moho depth.

2D cross-section to 1D cross-section: (refer to Figure 6). In this case, we extract a 
distribution of values along a 2D vertical plane, and then average the values to produce a 
“layered-cake” model. Only the values within a given layer are averaged together in order 
to preserve the geological layering, layer boundaries and discontinuities. This approach is 
used when synthesizing waveforms using a simplified 1D model like reflectivity 
(Kennett, 1985) or a Gaussian beam approach like Xgbm (Davis and Henson, 1993).



3D model to voxel: (refer to Figure 7). This transformation consists of extracting a single 
voxel value from a 3D model.

2D model to pixel: This transformation consists of extracting a single pixel value from a 
2D model.

Integrate properties along a 2-D great circle path: (refer to Figure 8). This 
transformation integrates  a property (such as slowness) along a great circle path. This 
transformation is useful when calculating seismic arrival times (which accumulates as 
travel time slowness), group times (which accumulates as group slowness), or amplitudes 
(which accumulates as attenuation).

Integrate properties along a general 2-D path: (refer to Figure 9). This transformation is 
similar to the one above except that the path of interest follows a general route that is 
specified by the user. This transformation is useful when large contrasts in seismic 
properties are expected to result in significant ray bending where the ray is not expected 
to travel along the great circle path.  Examples are the same as in the integration along the 
great circle path.

Map category to physical data. (refer to Figure 10). We can use the lithology (the general 
physical characteristics of a rock) as the subsurface model of interest because it is 
typically correlated with many parameters of interest such as seismic velocity and 
density. In these cases, one can choose a categorical simulation approach where each 
category is associated with a discrete resistivity value. For example, if the set of 
categories is gravel ,sand,clay{ }, then gravel→VP1,sand →VP2 ,clay →VP3 , where the 
VPi  represent distinct p-wave velocity values or some other property. This mapping from 
category to physical parameter is one of the data transformations we could generalize in 
order to accelerate the implementation of specific applications of the MCMC approach.

Advanced data transformations:
Transform from one physical property to another when multiple data sets are inverted 
jointly. The MCMC method simultaneously uses many types of data to refine our 
understanding of complex subsurface systems. Suppose that the system under study 
consists of a plume of fluid injected into a subsurface layer. The actual connection of a 
plume model to an observation is made via a forward model: given a possible plume 
configuration, the forward model predicts the values that would be observed by actual 
measurement. Then, the predicted data are compared to the measured data, yielding an 
estimate of the probability that the proposed plume model is in fact the true model.  By 
staging these comparisons in a series, we can identify probable plume models that are 
consistent with all available data. For example, consider an application where CO2 is 
injected into a geologic reservoir and that cross-borehole electrical resistance and 
borehole tiltmeter surveys have been made to monitor the spatial extent of the CO2 flood. 
To solve the forward problem for the electrical survey data, it is necessary to transform a 
given plume configuration into a 3D model of electrical resistivities using an appropriate 



petrophysical model. To solve the forward problem for the tiltmeter data, we need to 
transform the plume model to a 3D pressure field using a different petrophysical model. 
In a staged inversion, these data transformations could be generalized such that a single 
software module can be used regardless of the type of data available and the 
petrophysical model needed.

Pre-processing of data differences. In some applications, the goal of the inversion is to 
characterize differences that develop due to some forcing condition such as injecting fluid 
into a layer, or due to different frequencies being used to probe the target. In these 
situations, the observations of interest are not the measured quantities themselves, but 
rather, time (or frequency) differences in the data. This type of perturbation analysis 
belongs to the class of time-dependent, 4D problems (function of x, y, z, and t) rather 
than the simpler 3D, time-independent problems. An example of a 4D problem would be 
the use of INSAR (interferometric synthetic aperture radar) data used to monitor small 
changes in ground surface elevation due to tectonic or man-made events. We could 
consider the development a general module that any application could use to generate the 
data differences. 

Modeling of realistic spatial distributions of a physical parameter:
Natural geologic systems exhibit spatial variability of physical properties such as seismic 
velocity. This spatial variability is typically not random, i.e., it exhibits trends that are 
related to the various geologic processes that produced or distributed the geologic 
materials. When these trends can be quantified, they can be used as a constraint to 
stabilize the MCMC inversion. For example, in sedimentary basins, layers of gravel, 
sand, silt and clay tend to be deposited in a particular order, and tend to have particular 
correlation lengths. In many geologic settings, available data suggests that the values of a 
given property vary in a gradual or “smooth” way from one location to the next. We can 
make use of these trends to produce subsurface models that honor these observations. The 
models produced can also honor data collected along a profile, and spatial correlation 
data.

Honor vertical profile information: When data collected along a profile are available 
(e.g., borehole geophysical logs, core sample properties), we can use it to constrain the 
properties of the subsurface models proposed by the MCMC process. The goal of this 
approach is to produce models that exhibit the same properties along the line where the 
profile data was observed. The profile data can be considered as 100% accurate, and thus 
the proposed model has a probability p = 1.0 that it will honor the data exactly. The data 
can also be considered as somewhat uncertain and the models proposed have a 
probability 0.0 < p ≤1.0 that it will honor the data within some tolerance; in this case p is 
inversely related to the uncertainty. 

Honor surface information (maps): This approach is similar to the one above; in this 
case, the goal is to produce models that exhibit the properties observed along the plane 
located at the ground surface. As before, the data can be considered as 100% accurate or 
have some measure of uncertainty.



Honor smooth trend - spatial correlations in a local neighborhood: (refer to Figure 11). 
Many subsurface environments tend to exhibit properties that vary smoothly between a 
given locality and its adjacent neighbors. When inverting for such models it is desirable 
to include a constraint that forces the search to only consider smoothly varying models. 
In these situations, one can introduce a dependency between the local value (e.g., voxel 
or profile) and that of its neighbors. When the pixels consist of continuous values, the 
simplest approach is the neighborhood averaging. Each pixel is replaced by the average 
value of the pixels contained in some neighborhood about it. This approach tends to blur 
the image.  An alternative approach is to use a median filter. In this case, a neighborhood 
around the pixel under consideration is used, but this time the pixel value is replaced by 
the median pixel value in the neighborhood. This approach has the advantage that the 
sharpness of image edges is preserved.

In cases where the image values consist of categories (e.g., sand, gravel and clay) we can 
consider the following approach. If a given voxel consists of sand, there is a probability p
such that 0.0 < p ≤1.0 that the surrounding voxels also consist of sand. We can impose 
this type of smoothness constraint by forcing adjacent regions to match identically (or 
within some tolerance) a given voxel or profile. The values of p can be selected using 
prior data (data that can be used to compute or to sample the prior probability 
distribution) and expert judgment. We could develop a generalized module that 
incorporates one or more of these approaches.

Honor spatial correlation data – Fourier transform approach: This method can also 
produce realistic models of subsurface heterogeneity using prior knowledge. It is 
conceptually similar to the previous approach but is implemented by characterizing 
correlation length scales in the frequency domain. This method models variability as a 
stochastic process that can be characterized by its spatial covariance structure (e.g. 
Hubbard et al., 1999). Spatial covariance is used to determine the degree to which two or 
more spatial random variables are related (e.g. the thickness of sand and clay layers) The 
spatial covariance structure is based on data such as core sample observations, outcrop 
maps and the distances separating the observations. It assumes that the subsurface model 
is composed of variations characterized by different length scales. The spatial covariance 
function is expressed as a spectral density function using Fourier transformation.

Honor spatial correlation data and profile information – TSIM: TSIM is a categorical 
geostatistical approach that can produce realistic models of subsurface heterogeneity 
using prior knowledge (Carle, 2003). This methodology combines disparate types of 
observational data such as geophysical borehole logs, geologic insight, and geostatistical 
trends to produce a consolidated body of knowledge indicating those layer configurations 
that are most consistent with the available data.  It makes use of data such as the number 
and type of materials (e.g. gravel, sand, clay), the relative volumetric proportions for each 
of the materials, and horizontal and vertical correlation lengths. It uses the transition 
probability statistic to analyze spatial variability of geologic materials and to formulate 
co-kriging equations. This approach makes use of spatial cross correlations (how 



different geologic materials tend to locate in space relative to each other). It also honors 
profile information in a way that is more realistic than described previously under “Honor 
vertical profile information”. TSIM assumes that the profile data has a measure of 
uncertainty; thus, the probability that a given model will honor the profile data is no 
longer 1.0; instead it is inversely proportional to the data uncertainty.

Post-processing model transformations: 
As the Markov chain generates samples, it is important to verify that these samples are 
statistically representative of the posterior distribution. The methodology used to perform 
this verification is referred to as “convergence analysis”. Convergence analysis tools 
developed during a previous project assumed that the posterior samples consisted of 2D 
or a 3D distribution of values within a mesh; all the mesh elements are assumed to be of 
the same size. 

The same assumption is made by the tools previously developed for “posterior analysis”; 
i.e., the tools used to estimate the properties of samples of the posterior distribution 
produced by the MCMC approach. These tools summarize the relevant information in the 
posterior samples so that it can be visualized and understood.

Transform a columnar model to a 3D mesh model: (refer to Figure 12). An application of 
interest produces models where the properties of the domain are defined by a series of 
layers arranged within columns. Multiple columns specify the distribution of seismic 
property values in 3D space. To use existing tools, it is necessary to transform from one 
parameter space (column model) to another (3D mesh model). We are developing the 
tools necessary to perform this transformation.

Probability distribution transformations:
There are several probability distribution used when generating various types of random 
variables used by the MCMC process. In general, these require transforming from one 
type of distribution to another such as transforming a uniform distribution to a normal (or 
vice versa), or a general distribution to a standard distribution (or vice versa). We have 
used the following transformations for our work:

a) Transform a general normal distribution to a standard normal distribution.
b) Transform a standard normal distribution to a standard uniform distribution.
c) Transform a standard uniform distribution to a standard normal distribution.
d) Transform a standard normal distribution to a general normal distribution.

Implemented transformations:
Several codes have been constructed to implement some of the transformations listed 
above. Most of these programs have been coded in the popular Python programming 
language. Python is an object-oriented language used for both stand-alone programs and 
scripting applications (Lutz and Ascher, 1999). The few that are written in “C” are 
identified by a “*”.

Transformation: Module name: Class/method:



3D model to 3D 
volume
3D model to 2D 
map

starting_model_for_swaves.py
forward_body_script.py

Surface_Waves
Project

3D model to 2D 
cross-section

layers08.py Layer_Plot.ConvertLayersToXYZ

3D model to 1D 
borehole

models.py Model.get_vertical_profile

3D model to 
surface

forward_body_script.py ForwardBody.Project

2D cross-section 
to 1D cross-
section
3D model to voxel
2D grid to pixel starting_model_for_swaves.py Starting_Model.Surface_Waves
Integrate 
properties along a 
2-D great circle 
path

BodyForward.c
SurfForward.c

BodyForward
SurfForward

Integrate 
properties along a 
general 2D path
Integrate 
properties along a 
general 3D path

forward_body_script.py Forward_Rcvr.Conversion

Map category to 
physical data
Transform from 
one physical 
property to 
another when 
multiple data sets 
are inverted 
jointly
Pre-processing of 
data differences
Honor vertical 
profile 
information

forward_rcvr_script.py Forward_Rcvr.Conversion

Honor surface 
information 
(maps)
Honor smooth 
trend - spatial 
correlations in a 
local 
neighborhood

models.py Model.NeighborhoodWeightedAverageFilter

Honor spatial 
correlation data –
Fourier transform 
approach
Honor spatial 
correlation data 



and profile 
information –
TSIM
Transform a 
columnar model to 
a 3D mesh model

super_script_meshmodel_v2_file_list.py chng_col2grid

Transform general 
normal 
distribution to a 
standard normal 
distribution

Sampler.c* RDist()

Transform 
standard normal 
distribution to a 
standard uniform 
distribution

Sampler.c* P()

Transform 
standard uniform 
distribution to a 
standard normal 
distribution

Sampler.c* UniformToNormal()

Transform a 
standard normal 
distribution to a 
general normal 
distribution

Sampler.c* RDist()

Table 1 lists the transformations that have been implemented as part of this project.

Applications:
Here we present how we are currently employing some of these transformations in an 
application to construct regional models of the crust and upper mantle for the Yellow Sea 
– Korean Peninsula (YSKP) region, using three different data types (receiver functions, 
surface wave dispersion, body wave travel times). A detailed description of this work has 
been submitted for publication in Geophysical Research Letters: "Reconciling data using 
Markov Chain Monte Carlo: An application to the Yellow Sea - Korean Peninsula 
region" (Pasyanos et al., 2004). Below we list the various steps in the processing 
sequence and the transformations used for the YSKP work.

Base Sampler
Honor smooth trend 

Stage 1 (Receiver functions)
3D model to 1D borehole

Stage 2 (Surface wave dispersion)
3D model to 2D map
Integrate along great circle path



Stage 3 (Body wave travel times)
3D model to 2D map
3D model to surface
Integrate along great circle path

Convergence analysis
Transform a columnar model to a 3D mesh model

Clustering analysis
Transform a columnar model to a 3D mesh model

While we have primarily focused our efforts on the YSKP application, we can now easily 
apply the transformations developed to other geophysical problems. We now present an 
example of the procedure for the construction of a seismic model of the Las Vegas Valley 
and southern Nevada using data sets available for this region. This model is of interest for 
predicting ground motions for the Test Site Readiness Program. The order of the stages 
listed is arbitrary.

Base Sampler
Honor smooth trend

Stage 1 (Geotechnical shear wave profiles)
3D model to 1D borehole

Stage 2 (Seismic reflection profiles)
3D model to 2D map
3D model to surface
Integrate along great circle path

Stage 3 (Receiver functions)
3D model to 1D borehole

Stage 4 (Surface wave dispersion)
3D model to 2D map
Integrate along great circle path

Stage 5 (Body wave travel times)
3D model to 2D map
3D model to surface
Integrate along great circle path

Stage 6 (Gravity)
3D model to 2D map

Convergence analysis



Transform a columnar model to a 3D mesh model

Clustering analysis
Transform a columnar model to a 3D mesh model
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